CHAPTER 14 TESTING TACTICS 451

State diagram
for the
Account class
(adapted from
[KIR94])

Setup Accnt

Deposit {initial)

Deposit

Balance
credit
accntinfo

Withdrawal (final)

The tests to be designed should achieve all state coverage [KIR94]. That is, the op-
eration sequences should cause the Account class to make a transition through all
allowable states:

Test case s;: open*setupAcent e+ deposit (initial) *withdraw (final) * close

It should be noted that this sequence is identical to the minimum test sequence dis-
cussed in Section 14.9.1. Adding additional test sequences to the minimum se-
quence,

Test case sy: open*setupAcent * deposit(initial) * deposit * balance ¢ credit * withdraw
(final) * close

Test case $3: open *setupAccnt * deposit(initial) » deposit * withdraw * acentinfo s withdraw
(final) * close

Still more test cases could be derived to ensure that all behaviors for the class have
been adequately exercised. In situations in which the class behavior results in a col-
laboration with one or more classes, multiple state diagrams are used to track the
behavioral flow of the system.

The state model can be traversed in a “breadth-first” [MGR94] manner. In this con-
text, breadth first implies that a test case exercises a single transition. When a new
transition is to be tested only previously tested transitions are used.

Consider a CreditCard object that is part of the banking system. The initial state
of CreditCard is undefined (i.e., no credit card number has been provided). Upon
reading the credit card during a sale, the object takes on a defined state; that is, the
attributes card number and expiration date, along with bank-specific identifiers are de-
fined. The credit card is submitted when it is sent for authorization, and it is approved

452

PART TWO SOFTWARE ENGINEERING PRACTICE

when authorization is received. The transition of CreditCard from one state to an-
other can be tested by deriving test cases that cause the transition to occur. A
breadth-first approach to this type of testing would not exercise submitied before it
exercised undefined and defined. If it did, it would make use of transitions that had
not been previously tested and would therefore violate the breadth-first criterion.

CovaP
A testing strategy
similar to random or
partition festing
(Secfion 14.8) can be
used to design Ul fests.

The testing methods discussed in preceding sections are generally applicable across
all environments, architectures, and applications, but unique guidelines and ap-
proaches to testing are sometimes warranted. In this section we consider testing
guidelines for specialized environments, architectures, and applications that are
commonly encountered by software engineers.

14.10.1 Testing GUIs

Graphical user interfaces (GUIs) present interesting challenges for software engi-
neers. Because of reusable components provided as part of GUI development envi-
ronments, the creation of the user interface has become less time consuming and
more precise (Chapter 12). But, at the same time, the complexity of GUIs has grown,
leading to more difficulty in the design and execution of test cases.

Because many modern GUIs have the same look and feel, a series of standard
tests can be derived. Finite state modeling graphs may be used to derive a series of
tests that address specific data and program objects relevant to the GUL

Due to the large number of permutations associated with GUI operations, testing
should be approached using automated tools. A wide array of GUI testing tools has ap-
peared on the market over the past few years. For further discussion, see Chapter 12.

14.10.2 Testing of Client/Server Architectures

Client/server architectures represent a significant challenge for software testers. The
distributed nature of client/server environments, the performance issues associated
with transaction processing, the potential presence of a number of different hard-
ware platforms, the complexities of network communication, the need to service
multiple clients from a centralized (or in some cases, distributed) database, and the
coordination requirements imposed on the server all combine to make testing of
client/server software architectures considerably more difficult than standalone ap-
plications. In fact, recent industry studies indicate a significant increase in testing
time and cost when client/server environments are developed.

What types
8 of tests are
conducted for
client /server
systems?

CHAPTER 14 TESTING TACTICS 453

"In general, the testing of client/server software occurs at three different levels:
(1) individuatl client applications are tested in a “disconnected” mode; the operation
of the server and the underlying network are not considered; (2) the client software
and associated server applications are tested in concert, but network operations are
not explicitly exercised; (3) the complete client/server architecture, including net-
work operation and performance, is tested.

Although many different types of tests are conducted at each of these levels of de-
tail, the following testing approaches are commonly encountered for client/server
applications:

e Application function tests. The functionality of client applications is tested
using the methods discussed earlier in this chapter. In essence, the applica-
tion is tested in standalone fashion.

e Server tests. The coordination and data management functions of the
server are tested. Server performance (overall response time and data
throughput) is also considered.

o Database tests. The accuracy and integrity of data stored by the server is
tested. Transactions posted by client applications are examined to ensure
that data are properly stored, updated, and retrieved. Archiving is also tested.

+ Transaction tests. A series of tests are created to ensure that each class of
transactions is processed according to requirements. Tests focus on the
correctness of processing and also on performance issues (e.g., transaction
processing times and transaction volume).

¢ Network communication tests. These tests verify that communication
among the nodes of the network occurs correctly and that message passing,
transactions, and related network traffic occur without error. Network
security tests may also be conducted as part of these tests.

To accomplish these testing approaches, Musa [MUS93] recommends the devel-
opment of operational profiles derived from client/server usage scenarios.’ An oper-
ational profile indicates how different types of users interoperate with the
client/server system. That is, the profiles provide a “pattern of usage” that can be ap-
plied when tests are designed and executed.

14.10.3 Testing Documentation and Help Facilities

The term software testing conjures images of large numbers of test cases prepared to
exercise computer programs and the data that they manipulate. Recalling the defi-
nition of software presented in the first chapter of this book, it is important to note

9 It should be noted that operational profiles can be used in testing for all types of system architec-
tures, not just client/server.

454 PART TWO SOFTWARE ENGINEERING PRACTICE

that testing must also extend to the third element of the software configuration—
documentation.

Errors in documentation can be as devastating to the acceptance of the program
as errors in data or source code. Nothing is more frustrating than following a user
guide or an on-line help facility exactly and getting results or behaviors that do not
coincide with those predicted by the documentation. It is for this reason that docu-
mentation testing should be a meaningful part of every software test plan.

Documentation testing can be approached in two phases. The first phase, review
and inspection (Chapter 26), examines the document for editorial clarity. The second

"phase, live test, uses the documentation in conjunction with the use of the actual

aD,

o Are dll software error messages displayed for the user
described in more detail in the document? Are actions
to be taken as a consequence of an error message
clearly delineated?

o [f hypertext links are used, are they accurate and
complete?

o If hypertext is used, is the navigation design
appropriate for the information required?

program.

Documentation Testing

The following questions should be answered
during documentation and/or help facility

testing:

o Does the documentation accurately describe how to
accomplish each mode of use?

o s the description of each interaction sequence accurate?

o Are examples accurate?

o Are terminology, menu descriptions, and system

responses consistent with the actual program?
o s it relatively easy to locate guidance within the

The only viable way to answer these questions is to have
an independent third party (e.g., selected users) test the

documentation? documentation in the context of program usage. Al
o Can froubleshooting be accomplished easily with the discrepancies are noted and areas of document ambiguity
documentation? or weakness are defined for potential rewrite.

o Avre the document table of contents and index accurate
and complete?

o s the design of the document (layout, typefaces,
indentation, graphics) conducive to understanding and

\quick assimilation of information? /

14.10.4 Testing for Real-Time Systems

The time-dependent, asynchronous nature of many real-time applications adds a
new and potentially difficult element to the testing mix—time. Not only does the test
case designer have to consider conventional test cases but also event handling (i.e.,
interrupt processing), the timing of the data, and the parallelism of the tasks
(processes) that handle the data. In many situations, test data provided when a real-
time system is in one state will result in proper processing, while the same data pro-
vided when the system is in a different state may lead to error.

For example, the real-time software that controls a new photocopier accepts oper-
ator interrupts (i.e., the machine operator hits control keys such as RESET or DARKEN)

strategy for
testing a real-time
system?

CHAPTER 14 TESTING TACTICS 455

with no error when the machine is making copies (in the copying state). If these same
operator interrupts are input when the machine is in the jammed state, a display of the
diagnostic code (indicating the location of the jam) will be lost (an error).

In addition, the intimate relationship that exists between real-time software and
its hardware environment can also cause testing problems. Software tests must con-
sider the impact of hardware faults on software processing. Such faults can be ex-
tremely difficult to simulate realistically.

Comprehensive test case design methods for real-time systems continue to
evolve. However, a four-step strategy can be proposed:

o Task testing. The first step in the testing of real-time software is to test each
task independently. That is, conventional tests are designed and executed for
each task. Each task is executed independently during these tests. Task
testing uncovers errors in logic and function, but not timing or behavior.

o Behavioral testing. Using system models created with automated tools, it is
possible to simulate the behavior of a real-time system and examine its
behavior as a consequence of external events. These analysis activities can
serve as the basis for the design of test cases that are conducted when the
real-time software has been built.

¢ Intertask testing. Once errors in individual tasks and in system behavior
have been isolated, testing shifts to time-related errors. Asynchronous tasks
that are known to communicate with one another are tested with different
data rates and processing load to determine if intertask synchronization
errors will occur. In addition, tasks that communicate via a message queue
or data store are tested to uncover errors in the sizing of these data storage
areas.

o System testing. Software and hardware are integrated and a full range of
system tests (Chapter 13) are conducted in an attempt to uncover errors at
the software/hardware interface. Most real-time systems process interrupts.
Therefore, testing the handling of these Boolean events is essential. Using
the state diagram and the control specification (Chapter 8), the tester
develops a list of all possible interrupts and the processing that occurs as a
consequence of the interrupts. Tests are then designed to assess the
following system characteristics:

—Are interrupt priorities properly assigned and properly handled?
—Is processing for each interrupt handled correctly?

—Does the performance (e.g., processing time) of each interrupt-handling
procedure conform to requirements?

—Does a high volume of interrupts arriving at critical times create problems
in function or performance?

PART TWO SOFTWARE ENGINEERING PRACTICE

In addition, global data areas that are used to transfer information as part of in-
terrupt processing should be tested to assess the potential for the generation of side
effects.

N
o,
POINT
Testing patterns can
help o software team
communicate more
effectively about
testing ond better
understand the forces
thot lead fo a specific
testing approach.

In earlier chapters, we have discussed the use of patterns as a mechanism for de-
scribing software building blocks or software engineering situations. These build-
ing blocks or situations are encountered repeatedly as different applications are
built or different projects are conducted. Like their counterparts in analysis and de-
sign, testing patterns describe often-encountered building blocks or situations that
software testers may be able to reuse as they approach the testing of some new or
revised system.

Not only do testing patterns provide software engineers with useful guidance as-
testing activities commence, they also provide three additional benefits described by
Marick [MARO2]:

1. They provide a vocabulary for problem-solvers. “Hey, you know, we should use a Null
Object.”

2. They focus attention on the forces behind a problem. That allows [test case] designers
to better understand when and why a solution applies.

3. They encourage iterative thinking. Each solution creates a new context in which new
problems can be solved.

Although these benefits are “soft,” they should not be overlooked. Much of soft-
ware testing, even during the past decade, has been an ad hoc activity. If testing
patterns can help a software team communicate about testing more effectively,
understand the motivating forces that lead to a specific approach to testing, and
approach the design of test cases as an evolutionary activity, they have accom-
plished much.

Testing patterns are described in much the same way as analysis and design
patterns (Chapters 7 and 9). Dozens of testing patterns have been proposed in the
literature (e.g., [BIN99], [MARO2]). The following three testing patterns (presented in
abstract form only) provide representative examples:

Pattern name: pair testing

Abstract: A process-oriented pattern, pair testing describes a technique that is analogous
to pair programming (Chapter 4) in which two testers work together to design and execute
a series of tests that can be applied to unit, integration, or validation testing activities.

Pattern name: separate test interface

Abstract: There is a need to test every class in an object-oriented system, including “in-
ternal classes” (i.e., classes that do not expose any interface outside of the component
that used them). The separate test interface pattern describes how to create “a test in-

CHAPTER 14 TESTING TACTICS 457

terface that can be used to describe specific tests on classes that are visible only inter-
nally to a component” [LANO1].
Pattern name: scenario testing
Abstract: Once unit and integration tests have been conducted, there is a need to deter-
mine whether the software will perform in a manner that satisfies users. The scenario
testing pattern describes a technique for exercising the software from the user’s point of

view. A failure at this level indicates that the software has failed to meet a user visible re-
quirement [KANO1].

A comprehensive discussion of testing patterns is beyond the scope of this book. The
interested reader should see {BIN99] and [MARO2] for further information on this im-
portant topic.

The primary objective for test case design is to derive a set of tests that have the
highest likelihood of uncovering errors in software. To accomplish this objective, two
different categories of test case design techniques—applicable to conventional and
object-oriented systems—are used: white-box testing and black-box testing.
White-box tests focus on the program control structure. Test cases are derived to en-
sure that all statements in the program have been executed at least once during test-
ing and that all logical conditions have been exercised. Basis path testing, a white-box
technique, makes use of program graphs (or graph matrices) to derive a set of linearly
independent tests that will ensure coverage. Condition and data flow testing further ex-
ercise program logic, and loop testing complements other white-box techniques by
providing a procedure for exercising loops of varying degrees of complexity.
Black-box tests are designed to validate functional requirements without regard to
the internal workings of a program. Black-box testing techniques focus on the infor-
mation domain of the software, deriving test cases by partitioning the input and output
domain of a program in a manner that provides thorough test coverage. Equivalence
partitioning divides the input domain into classes of data that are likely to exercise spe-
cific software function. Boundary value analysis probes the program’s ability to handle
data at the limits of acceptability. Orthogonal array testing provides an efficient, sys-
tematic method for testing systems with small numbers of input parameters.
Although the overall objective of object-oriented testing—to find the maximum
number of errors with a minimum amount of effort—is identical to the objective of
conventional software testing, the strategy and tactics for OO testing differ some-
what. The view of testing broadens to include the review of both the analysis and
design model. In addition, the focus of testing moves away from the procedural com-
ponent (the module) and toward the class. The design of tests for a class uses a va-
riety of methods: fault-based testing, random testing, and partition testing. Each of
these methods exercises the operations encapsulated by the class. Test sequences

458

PART TWO SOFTWARE ENGINEERING PRACTICE

are designed to ensure that relevant operations are exercised. The state of the class,
represented by the values of its attributes, is examined to determine if errors exist.

Integration testing can be accomplished using a use-based strategy. Use-based
testing constructs the system in layers, beginning with those classes that do not use
server classes. Integration test case design methods can also use random and parti-
tion tests. In addition, scenario-based testing and tests derived from behavioral mod-
els can be used to test a class and its collaborators. A test sequence tracks the flow
of operations across class collaborations.

Specialized testing methods encompass a broad array of software capabilities and
application areas. Testing for graphical user interfaces, client/server architectures,
documentation and help facilities, and real-time systems each require specialized
guidelines and techniques.

Experienced software developers often say, “Testing never ends, it just gets trans-
ferred from you [the software engineer] to your customer. Every time your customer
uses the program, a test is being conducted.” By applying test case design, the soft-
ware engineer can achieve more complete testing and thereby uncover and correct
the highest number of errors before the “customer’s tests” begin.

[AMB95] Ambler, S., “Using Use Cases,” Software Development, July 1995, pp. 53-61.

[BEI9O] Beizer, B., Software Testing Techniques, 2nd ed., Van Nostrand-Reinhold, 1990.

[BEI95} Beizer, B., Black-Box Testing, Wiley, 1995.

[BIN94] Binder, R. V., “Testing Object-Oriented Systems: A Status Report,” American Program-
mer, vol. 7, no. 4, April 1994, pp. 23-28.

[BIN99] Binder, R., Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-Wesley,
1999.

[DEU79] Deutsch, M., “Verification and Validation,” in Software Engineering (R. Jensen and
C. Tonies, eds.), Prentice-Hall, 1979, pp. 329-408.

[FRA88] Frankl, P. G., and E. J. Weyuker, “An Applicable Family of Data Flow Testing Criteria,”
IEEE Trans. Software Engineering, vol. SE-14, no. 10, October 1988, pp. 1483-1498.

[FRA93] Frankl, P. G., and S. Weiss, “An Experimental Comparison of the Effectiveness of Branch
Testing and Data Flow,” IEEE Trans. Software Engineering, vol. SE-19, no. 8, August 1993,
pp. 770-787.

[KAN93] Kaner, C., J. Falk, and H. Q. Nguyen, Testing Computer Software, 2nd ed., Van Nostrand-
Reinhold, 1993.

[KANO1] Kaner, C., “Pattern: Scenario Testing,” (draft), 2001, available at http://www.testing.
com/test-patterns/patterns/pattern-scenario-testing-kaner.htmi.

[KIR94] Kirani, S., and W. T. Tsai, “Specification and Verification of Object-Oriented Programs,”
Technical Report TR 94-64, Computer Science Department, University of Minnesota, De-
cember 1994.

[LANO1] Lange, M., “It’s Testing Time! Patterns for Testing Software, June, 2001, downloadable
from http://www.testing.com/test-patterns/patterns/index.html.

[LIN94] Lindland, O. 1., et al., “Understanding Quality in Conceptual Modeling,” IEEE Software,
vol. 11, no 4, July 1994, pp. 42-49.

[MAR94] Marick, B., The Craft of Software Testing, Prentice-Hall, 1994.

[MAROQ2] Marick, B., “Software Testing Patterns,” 2002, http://www.testing.com/test-patterns/
index.html.

[MCC76} McCabe, T., “A Software Complexity Measure,” IEEE Trans. Software Engineering, vol.
SE-2, December 1976, pp. 308-320.

CHAPTER 14 TESTING TACTICS 459

[MGR94] McGregor, J. D., and T. D. Korson, “Integrated Object-Oriented Testing and Develop-
ment Processes,” CACM, vol. 37, no. 9, September 1994, pp. 59-77.

[MUS93] Musa, J., “Operational Profiles in Software Reliability Engineering,” IEEE Software,
March 1993, pp. 14-32.

[MYE79] Myers, G., The Art of Software Testing, Wiley, 1979.

[NTA88] Ntafos, S. C., “A Comparison of Some Structural Testing Strategies,” IEEE Trans. Soft-
ware Engineering, vol. SE-14, no. 6, June 1988, pp. 868-874.

[PHA89] Phadke, M. S., Quality Engineering Using Robust Design, Prentice-Hall, 1989.

[PHA97] Phadke, M. S., “Planning Efficient Software Tests,” Crosstalk, vol. 10, no. 10, October
1997, pp. 11-15.

[TAI89] Tai, K. C., “What to Do Beyond Branch Testing,” ACM Software Engineering Notes, vol. 14,
no. 2, April 1989, pp. 58-61.

14.1. Specify, design, and implement a software tool that will compute the cyclomatic com-
plexity for the programming language of your choice. Use the graph matrix as the operative data
structure in your design.

14.2. Give at least three examples in which black-box testing might give the impression that
“everything's OK,” while white-box tests might uncover an error. Give at least three examples
in which white-box testing might give the impression that “everything’s OK,” while black-box
tests might uncover an error.

14.3. Read Beizer [BEI95] and determine how the program you have developed in Problem 14.1
can be extended to accommodate various link weights. Extend your tool to process execution
probabilities or link processing times.

14.4. Select a software component that you have designed and implemented recently. Design a
set of test cases that will ensure that all statements have been executed using basis path testing.

14.5. Why do we have to retest subclasses that are instantiated from an existing class, if the
existing class has already been thoroughly tested? Can we use the test cases designed for the
existing class?

14.6. Canyou think of any additional testing characteristics that are not discussed in Section 14.1?

14.7. Design an automated tool that will recognize loops and categorize them as indicated in
Section 14.5.3.

14.8. Myers [MYE79] uses the following program as a self-assessment of one's ability to spec-
ify adequate testing: A program reads three integer values. The three values are interpreted as
representing the lengths of the sides of a triangle. The program prints a message that states
whether the triangle is scalene, isosceles, or equilateral. Develop a set of test cases that you feel
will adequately test this program.

14.9. Design and implement the program (with error handling where appropriate) specified in
Problem 14.8. Derive a flow graph for the program and apply basis path testing to develop test
cases that will guarantee that all statements in the program have been tested. Execute the cases
and show your results.

14.10. Will exhaustive testing (even if it is possible for very small programs) guarantee that the
program is 100 percent correct? :

14.11. In your own words, describe why the class is the smallest reasonable unit for testing
within an OO system.

14.12. Extend the tool described in Problem 14.7 to generate test cases for each loop category,
once encountered. It will be necessary to perform this function interactively with the tester.

PART TWO SOFTWARE ENGINEERING PRACTICE

14.13. Apply random testing and partitioning to three classes defined in the design for the Safe-
Home system. Produce test cases that indicate the operation sequences that will be invoked.

14.14. Apply muiltiple class testing and tests derived from the behavioral model to the Safe-
Home design.

14.15. Test a user manual (or help facility) for an application that you use frequently. Find at
least one error in the documentation.

Among dozens of books that present test case design methods are Craig and Kaskiel (System-
atic Software Testing, Artech House, 2002), Tamres (Introducing Software Testing, Addison-
Wesley, 2002), Whittaker (How to Break Software, Addison-Wesley, 2002), jorgensen (Software
Testing: A Craftman’s Approach, CRC Press, 2002), Splaine and his colleagues (The Web Testing
Handbook, Software Quality Engineering Publishing, 2001), Patton (Software Testing, Sams Pub-
lishing, 2000), Kaner and his colleagues (Testing Computer Software, second edition, Wiley,
1999).In addition, Hutcheson (Software Testing Methods and Metrics: The Most Important Tests,
McGraw-Hill, 1997) and Marick (The Craft of Software Testing: Subsystem Testing Including Object-
Based and Object-Oriented Testing, Prentice-Hall, 1995) present treatments of testing methods
and strategies.

Myers [MYE79] remains a classic text, covering black-box techniques in considerable detail.
Beizer [BEI90] provides comprehensive coverage of white-box techniques, introducing a level
of mathematical rigor that has often been missing in other treatments of testing. His later book
[BEI95] presents a concise treatment of important methods. Perry (Effective Methods for Software
Testing, Wiley-QED, 1995) and Friedman and Voas (Software Assessment: Reliability, Safety, Testa-
bility, Wiley, 1995) present good introductions to testing strategies and tactics. Mosley (The
Handbook of MIS Application Software Testing, Prentice-Hall, 1993) discusses testing issues for
large information systems, and Marks (Testing Very Big Systems, McGraw-Hill, 1992) discusses
the special issues that must be considered when testing major programming systems.

Sykes and McGregor (Practical Guide for Testing Object-Oriented Software, Addison-Wesley,
2001), Bashir and Goel (Testing Object-Oriented Software, Springer-Verlag, 2000), Binder (Testing
Object-Oriented Systems, Addison-Wesley, 1999), Kung and his colleagues (Testing Object-
Oriented Software, IEEE Computer Society Press, 1998), Marick (The Craft of Software Testing,
Prentice-Hall, 1997) and Siegel and Muller (Object-Oriented Software Testing: A Hierarchical Ap-
proach, Wiley, 1996) present strategies and methods for testing OO systems.

Software testing is a resource-intensive activity. It is for this reason that many organizations
automate parts of the testing process. Books by Dustin, Rashka, and Poston (Automated Software
Testing: Introduction, Management, and Performance, Addison-Wesley, 1999), Graham and her col-
leagues (Software Test Automation, Addison-Wesley, 1999), and Poston (Automating Specification-
Based Software Testing, IEEE Computer Society, 1996) discuss tools, strategies, and methods for
automated testing.

A number of books consider testing methods and strategies in specialized application areas.
Gardiner (Testing Safety-Related Software: A Practical Handbook, Springer-Verlag, 1999) has ed-
ited a book that addresses testing of safety-critical systems. Mosley (Client/Server Software Test-
ing on the Desk Top and the Web, Prentice-Hall, 1999) discusses the test process for clients,
servers, and network components. Rubin (Handbook of Usability Testing, Wiley, 1994) has writ-
ten a useful guide for those who must exercise human interfaces.

Binder [BIN99] describes almost 70 testing patterns that cover testing of methods,
classes/clusters, subsystems, reusable components, frameworks, and systems as well as test
automation and specialized database testing. A list of these patterns can be found at
www.rbsc.com/pages/TestPatternList.htm.

A wide variety of information sources on test case design methods are available on the In-
ternet. An up-to-date list of World Wide Web references that are relevant to testing techniques
can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

Key
CONCEPTS

function points
GQM paradigm
indicators
McCall’s factors
measurement
attributes
principles
measures
metrics
analysis model
code
design model

object-oriented
festing
quality

‘ - PRODUCT |
METRICS

key element of any engineering process is measurement. We use mea-

sures to better understand the attributes of the models that we create and

to assess the quality of the engineered products or systems that we build.
But unlike other engineering disciplines, software engineering is not grounded in
the basic quantitative laws of physics. Direct measures, such as voltage, mass, ve-
locity, or temperature, are uncommon in the software world. Because software
measures and metrics are often indirect, they are open to debate. Fenton [FEN91]
addresses this issue when he states: ' :

Measurement is the process by which numbers or symbols are assigned to the attrib-
utes of entities in the real world in such a way as to define them according to clearly
defined rules.. . . In the physical sciences, medicine, economics, and more recently the
social sciences, we are now able to measure attributes that we previously thought to
be unmeasurable . . . Of course, such measurements are not as refined as many mea-
surements in the physical sciences . . ., but they exist [and important decisions are
made based on them]. We feel that the obligation to attempt to “measure the unmea-
surable” in order to improve our understanding of particular entities is as powerful in
software engineering as in any discipline.

But some members of the software community continue to argue that software
is “unmeasurable” or that attempts at measurement should be postponed until we
better understand software and the attributes that should be used to describe it.
That is a mistake.

461

462

PART TWO SOFTWARE ENGINEERING PRACTICE

Although product metrics for computer software are often not absolute, they pro-
vide us with a systematic way to assess quality based on a set of clearly defined rules.
They also provide the software engineer with on-the-spot, rather than after-the-fact
insight. This enables the engineer to discover and correct potential problems before
they become catastrophic defects.

In this chapter, we consider measures that can be used to assess the quality of the
product as it is being engineered. These measures of internal product attributes pro-
vide the software engineer with a real-time indication of the efficacy of the analysis,
design, and code models; the effectiveness of test cases; and the overall quality of
the software to be built.

Even the most jaded software developers will agree that high-quality software is an
important goal. But how do we define quality? In the most general sense, software
quality is conformance to explicitly stated functional and performance requirements, ex-
plicitly documented development standards, and implicit characteristics that are ex-
pected of all professionally developed software. ‘

There is little question that the preceding definition could be modified or extended
and debated endlessly. For the purposes of this book, the definition serves to em-
phasize three important points:

1. Software requirements are the foundation from which quality is measured.
Lack of conformance to requirements is lack of quality.'

1 It'is important to note that quality extends to the technical characteristics of analysis and design
models and the source code realization of those models. Models that exhibit high quality (in the
technical sense) will lead to software that exhibits high quality from the customer's point of view.

[/5
L ¢

POINT

It's interesting to note
that McCall's quality
factors are os valid
today as they were in
the 1970s. Therefore,
it's reasonable t
assert that the factors
thot affect software
quality do not change
with time.

CHAPTER 15 PRODUCT METRICS 463

2. Specified standards define a set of development criteria that guide the man-
ner in which software is engineered. If the criteria are not followed, lack of
quality will almost surely result.

3. There is a set of implicit requirements that often goes unmentioned (e.g., the
desire for ease of use). If software conforms to its explicit requirements but
fails to meet implicit requirements, software quality is suspect.

Software quality is a complex mix of factors that will vary across different applica-
tions and the customers who request them. In the sections that follow, software
quality factors are identified and the human activities required to achieve them are
described.

15.1.1 McCall's Quality Factors

The factors that affect software quality can be categorized in two broad groups:
(1) factors that can be directly measured (e.g., defects uncovered during lesting) and
(2) factors that can be measured only indirectly (e.g., usability or maintainability). In
each case measurement should occur. We must compare the software (programs,
data, documents) to some datum and arrive at an indication of quality.

MccCall, Richards, and Walters [MCC77] propose a useful categorization of factors
that affect software quality. These software quality factors, shown in Figure 15.1, fo-
cus on three important aspects of a software product: its operational characteristics,
its ability to undergo change, and its adaptability to new environments.

Referring to the factors noted in Figure 15.1, McCall and his colleagues provide
the following descriptions:

Correctness. The extent to which a program satisfies its specification and fulfills the cus-
tomer’s mission objectives

Reliability. The extent to which a program can be expected to perform its intended func-
tion with required precision. {It should be noted that other, more complete definitions of
reliability have been proposed (see Chapter 26).]

McCall's
software
quality factors

Maintainability Portability
Flexibility Reusability
Testability Interoperability

PRODUCT REVISION PRODUCT.-TRANSITION

_PRODUCT OPERATION"

Correctness Usability Efficiency

Reliability Integrity

CovaB

Build your own
checklist using these
factors. First assign
each a relative impor-
tance for your project.
Then, grade your work
products fo assess the
quality of the software
you're building.

PART TWO SOFTWARE ENGINEERING PRACTICE

Efficiency. The amount of computing resources and code required by a program to per-
form its function.

Integrity. The extent to which access to software or data by unauthorized persons can be
controlled.

Usability. The effort required to learn, operate, prepare input for, and interpret output of a
program.

Maintainability. The effort required to locate and fix an error in a program. [This is a very
limited definition.]

Flexibility. The effort required to modify an operational program.

Testability. The effort required to test a program to ensure that it performs its intended
function.

Portability. The effort required to transfer the program from one hardware and/or soft-
ware system environment to another.

Reusability. The extent to which a program [or parts of a program] can be reused in other
applications—related to the packaging and scope of the functions that the program
performs.

Interoperability. The effort required to couple one system to another.

: of how much it changes the world for the befter.”

It is difficult, and in some cases impossible, to develop direct measures? of these
quality factors. In fact, many of the metrics defined by McCall et al. can be measured
only subjectively. The metrics may be in the form of a checklist that is used to “grade”
specific attributes of the software [CAV78].

16.1.2 ISO 9126 Quality Factors

The ISO 9126 standard was developed in an attempt to identify quality attributes for
computer software. The standard identifies six key quality attributes:

Functionality. The degree to which the software satisfies stated needs as indi-
cated by the following sub-attributes: suitability, accuracy, interoperability, compli-
ance, and securily.

Reliability. The amount of time that the software is available for use as indicated
by the following sub-attributes: maturity, fault tolerance, recoverability.

Usability. The degree to which the software is easy to use as indicated by the fol-
lowing sub-attributes: understandability, learnability, operability.

2 A direct measure implies that there is a single countable value that provides a direct indication of
the attribute being examined. For example, the “size” of a program can be measured directly by
counting the number of lines of code. 7

CHAPTER 15 PRODUCT METRICS 465

Efficiency. The degree to which the software makes optimal use of system re-
sources as indicated by the following sub-attributes: time behavior, resource behavior.

Maintainability. The ease with which repair may be made to the software as
indicated by the following sub-attributes: analyzability, changeability, stability,
testability.

Portability. The ease with which the software can be transposed from one envi-
ronment to another as indicated by the following sub-attributes: adaptability, instal-
lability, conformance, replaceability.

Like other software quality factors discussed in Chapter 9 and Section 15.1.1, the ISO
9126 factors do not necessarily lend themselves to direct measurement. However,
they do provide a worthwhile basis for indirect measures and an excellent checklist
for assessing the quality of a system.

s crealive when the doer cares about doing it right, or better.”

15.1.3 The Tramsition to a Quantitative View

In the preceding sections, a set of qualitative factors for the “measurement” of soft-
ware quality was discussed. We strive to develop precise measures for software
quality and are sometimes frustrated by the subjective nature of the activity. Cavano
and MccCall [CAV78] discuss this situation:

The determination of quality is a key factor in every day events—wine tasting contests,
sporting events [e.g., gymnastics], talent contests, etc. In these situations, quality is
judged in the most fundamental and direct manner: side by side comparison of objects
under identical conditions and with predetermined concepts. The wine may be judged ac-
cording to clarity, color, bouquet, taste, etc. However, this type of judgment is very sub-
jective; to have any value at all, it must be made by an expert.

Subjectivity and specialization also apply to determining software quality. To help solve

this problem, a more precise definition of software quality is needed as well as a way to de-
rive quantitative measurements of software quality for objective analysis . . .

In the sections that follow, we examine a set of software metrics that can be ap-
plied to the quantitative assessment of software quality. In all cases, the metrics rep-
resent indirect measures; that is, we never really measure quality but rather some
manifestation of quality. The complicating factor is the precise relationship between
the variable that is measured and the quality of software.

@ measurement begon with an index finger . . . and grew Iosoplisw
0 100 is software measurement maturing.”]

i

466

| Lo P M

PART TWO SOFTWARE ENGINEERING PRACTICE

As we noted in the introduction to this chapter, measurement assigns numbers or
symbols to attributes of entities in the real word. To accomplish this, a measurement
model encompassing a consistent set of rules is required. Although the theory of
measurement (e.g., [KYB84]) and its application to computer software (e.g.,
[DEMB8I], [BRI96], [ZUS97]) are topics that are beyond the scope of this book, it is
worthwhile to establish a fundamental framework and a set of basic principles for
the measurement of product metrics for software.

15.2.1 Measures, Metrics, and Indicators

Although the terms measure, measurement, and metrics are often used interchange-
ably, it is important to note the subtle differences between them. Because measure
can be used either as a noun or a verb, definitions of the term can become confus-
ing. Within the software engineering context, a measure provides a quantitative in-
dication of the e :tent, amount, dimension, capacity, or size of some attribute of a
product or process. Measurement is the act of determining a measure. The IEEE Stan-
dard Glossary [IEE93] defines metric as “a quantitative measure of the degree to
which a system, component, or process possesses a given attribute.”

When a single data point has been collected (e.g., the number of errors uncovered
within a single software component), a measure has been established. Measurement
occurs as the result of the collection of one or more data points (e.g., a number of
component reviews and unit tests are investigated to collect measures of the num-
ber of errors for each). A software metric relates the individual measures in some
way (e..g, the average number of errors found per review or the average number of
errors found per unit test).

A software engineer collects measures and develops metrics so that indicators
will be obtained. An indicator is a metric or combination of metrics that provides in-
sight into the software process, a software project, or the product itself. An indicator
provides insight that enables the project manager or software engineers to adjust the
process, the project, or the product to make things better. '

sdghce,isqsmome as its measurement tools.”
Louis Pasteur

15.2.2 The Challenge of Product Metrics

Over the past three decades, many researchers have attempted to develop a single
metric that provides a comprehensive measure of software complexity. Fenton
[FEN94] characterizes this research as a search for “the impossible holy grail.” Al-
though dozens of complexity measures have been proposed [ZUS90], each takes a
somewhat different view of what complexity is and what attributes of a system lead
to complexity. By analogy, consider a metric for evaluating an attractive car. Some

Volumi = .”'f:&i i

on product metrics has
heen'compiled by Horst
Tuseat: o < e

ihctobokade/

~zuse/.

. What are
the steps
of an effective

measurement
process?

CHAPTER 15 PRODUCT METRICS . 467

observers might emphasize body design, others might consider mechanical charac-
teristics, still others might tout cost, or performance, or fuel economy, or the ability
to recycle when the car is junked. Since any one of these characteristics may be at
odds with others, it is difficult to derive a single value for “attractiveness.” The same
problem occurs with computer software.

Yet there is a need to measure and control software complexity. And if a single
value of this quality metric is difficult to derive, it should be possible to develop mea-
sures of different internal progrem attributes (e.g., effective modularity, functional
independence, and other attributes discussed in Chapters 9 through 12). These
measures and the metrics derived from them can be used as independent indicators
of the quality of analysis and design models. But here again, problems arise. Fenton
[FEN94] notes this when he states: “The danger of attempting to find measures which
characterize so many different attributes is that inevitably the measures have to sat-
isfy conflicting aims. This is counter to the representational theory of measurement.”
Although Fenton’s statement is correct, many people argue that product measure-
ment conducted during the early stages of the software process provides software
engineers with a consistent and ‘objective mechanism for assessing quality.

It is fair to ask, however, just how valid product metrics are. That is, how closely
aligned are product metrics to the long-term reliability and quality of a computer-
based system? Fenton [FEN91] addresses this question in the following way:

In spite of the intuitive connections between the internal structure of software products
[product metrics] and its external product and process attributes, there have actually
been very few scientific attempts to establish specific relationships. There are a number
of reasons why this is so; the most commonly cited is the impracticality of conducting rel-
evant experiments.

Each of the “challenges” noted here is a cause for caution, but it is no reason to
dismiss product metrics.* Measurement is essential if quality is to be achieved.

15.2.3 Measurement Principles

Before we introduce a series of product metrics that (1) assist in the evaluation of
analysis and design models, (2) provide an indication of the complexity of procedural
designs and source code, and (3) facilitate the design of more effective testing, it is
important to understand basic measurement principies. Roche [ROC94] suggests a
measurement process that can be characterized by five activities:

e Formulation. The derivation of software measures and metrics appropriate for
the representation of the software that is being considered.

3 Although criticism of specific metrics is common in the literature, many critiques focus on esoteric
issues and miss the primary objective of metrics in the real world: to help the software engineer es-
tablish a systematic and objective way to gain insight into his or her work and to improve product
quality as a result.

468

ﬁnwcs‘

In reality, many product
mefrics in use today do
ot conform to these
principles as well as
they should. But that
doesn’t mean that they
have no valve—just
be careful when you
use them, under-
standing that they are
intended fo provide
insight, not hard scien-
tific verification.

Auseful discussion of
GQM can be found af
www,thedacs.com
/GoldPractices/
pradiices /gqme.
btud.

PART TWO SOFTWARE ENGINEERING PRACTICE

o Collection. The mechanism used to accumulate data required to derive the
formulated metrics.

e Analysis. The computation of metrics and the application of mathematical tools.

e Interpretation. The evaluation of metrics in an effort to gain insight into the
quality of the representation.

® Feedback. Recommendations derived from the interpretation of product
metrics transmitted to the software team.

Software metrics will be useful only if they are characterized effectively and vali-
dated so that their worth is proven. The following principles [LET03] are representa-
tive of many that can be proposed for metrics characterization and validation:

e A melric should have desirable mathematical properties. That is, the metric's
value should be in a meaningful range (e.g., zero to one, where zero truly
means absence, one indicates the maximum value, and 0.5 represents the
“half-way point”). Also, a metric that purports to be on a rational scale
should not be composed of components that are only measured on an
ordinal scale.

e When a metric represents a software characteristic that increases when positive
traits occur or decreases when undesirable traits are encountered, the value of
the metric should increase or decrease in the same manner.

e Each metric should be validated empirically in a wide variety of contexts before
being published or used to make decisions. A metric should measure the factor
of interest, independently of other factors. It should “scale up” to large systems
and work in a variety of programming languages and system domains.

Although formulation, characterization, and validation are critical, collection and
analysis are the activities that drive the measurement process. Roche [ROC94] sug-
gests the following guidelines for these activities: (1) whenever possible, data col-
lection and analysis should be automated; (2) valid statistical techniques should be
applied to establish relationships between internal product attributes and external
quality characteristics (e.g., whether the level of architectural complexity is corre-
lated with the number of defects reported in production use); and (3) interpretative
guidelines and recommendations should be established for each metric.

15.2.4 Goal-Oriented Software Measurement

The Goal/Question/Metric (GQM) paradigm was developed by Basili and Weiss
[BAS84] as a technique for identifying meaningful metrics for any part of the soft-
ware process. GQM emphasizes the need to (1) establish an explicit measurement
goal that is specific to the process activity or product characteristic that is to be as-
sessed; (2) define a set of questions that must be answered in order to achieve the
goal, and (3) identify well-formulated metrics that help to answer these questions.

CHAPTER 15 PRODUCT METRICS 469

A goal definition template [BAS94] can be used to define each measurement goal.
The template takes the form:

Analyze {the name of activity or attribute to be measured) for the purpose of {the over-
all objective of the analysis*} with respect to {the aspect of the activity or attribute that
is considered} from the viewpoint of {the people who have an interest in the measure-
ment} in the context of {the environment in which the measurement takes place}.

As an example, consider a goal definition template for SafeHome:

Analyze the SafeHome software architecture for the purpose of evaluating architec-
tural components with respect to the ability to make SafeHome more extensible from
the viewpoint of the software engineers performing the work in the context of prod-
uct enhancement over the next three years.

With a measurement goal explicitly defined, a set of questions is developed. An-
swers to these questions help the software team (or other stakeholders) to determine
whether the measurement goal has been achieved. Among the questions that might
be asked are:

Q,: Are architectural components characterized in a manner that compart-
mentalizes function and related data?

Q. Is the complexity of each component within bounds that will facilitate
modification and extension?

Each of these questions should be answered quantitatively, using one or more
measures and metrics. For example, a metric that provides an indication of the co-
hesion (Chapter 9) of an architectural component might be useful in answering Q,.
Cyclomatric complexity and metrics discussed in Section 15.4.1 or 15.4.2 might pro-
vide insight for Q.. _

In actuality, there may be a number of measurement goals with related questions
and me'rics. In every case, the metrics that are chosen (or derived) should conform
to the measurement principles discussed in Section 15.2.3 and the measurement at-
tributes discussed in Section 15.2.5. For further information of GQM, the interested
reader should see [SHE98] or [SOL99].

15.2.5 The Attributes of Effective Software Metrics

Hundreds of metrics have been proposed for computer software, but not all provide
practical support to the software engineer. Some demand measurement that is too
complex, others are so esoteric that few real world professionals have any hope of
understanding them, and others violate the basic intuitive notions of what high-
quality software really is.

4 van Solingen and Berghout [SOL99] suggest that the objective is almost always “understanding,
controlling, or improving” the process activity or product attribute.

470

How should
we assess
the quality of a

proposed
software metric?

Covag

Experience indicates
that a product metric
will be used only if itis
intuitive and easy to
compute. If dozens of
“counts” have o be
made, and complex
computations are
required, it is unlikely
that the metric will be
widely adopted.

PART TWO SOFTWARE ENGINEERING PRACTICE

Ejiogu [EJI91] defines a set of attributes that should be encompassed by effective
software metrics. The derived metric and the measures that lead to it should be:

e Simple and computable. 1t should be relatively easy to learn how to derive the
metric, and its computation should not demand inordinate effort or time.

o Empirically and intuitively persuasive. The metric should satisfy the engineer’s
intuitive notions about the product attribute under consideration.

o Consistent and objective. The metric should always yield results that are
unambiguous.

e Consistent in the use of units and dimensions. The mathematical computation
of the metric should use measures that do not lead to bizarre combinations
of units.

e Programming language independent. Metrics should be based on the analysis
model, the design model, or the structure of the program itself.

¢ An effective mechanism for high-quality feedback. That is, the metric should
lead to a higher-quality end product.

Although most software metrics satisfy these attributes, some commonly used
metrics may fail to satisfy one or two of them. An example is the function point
(discussed in Section 15.3.1)—a measure of the “functionality” delivery by the
software. It can be argued?® that the consistent and objective attribute fails because
an independent third party may not be able to derive the same function point value
as a colleague using the same information about the software. Should we there-
fore reject the FP measure? The answer is: Of course not! FP provides useful in-
sight and therefore provides distinct value, even if it fails to satisfy one attribute
perfectly.

15.2.6 The Product Metrics Landscape
Although a wide variety of metrics taxonomies have been proposed, the following

outline addresses the most important metrics areas:

Metrics for the analysis model. These metrics address various aspects of the
analysis model and include:

Functionality delivered—provides an indirect measure of the functionality that is
packaged within the software.

System size—measures of the overall size of the system defined in terms of in-
formation available as part of the analysis model.

Specification quality—provides an indication of the specificity and completeness
of a requirements specification.

5 An equally vigorous counter-argument can be made. Such is the nature of software metrics.

CHAPTER 15 PRODUCT METRICS 471

Metrics for the design model. These metrics quantify design attributes in a man-
ner that allows a software engineer to assess design quality. Metrics include:

Architectural metrics—provide an indication of the quality of the architectural
. design.

Component-level metrics—measure the complexity of software components and
other characteristics that have a bearing on quality.

Interface design metrics—focus primarily on usability.
Specialized OO design metrics—measure characteristics of classes and their com-

munication and collaboration characteristics.

Metrics for source code. These metrics measure the source code and can be used
to assess its complexity, maintainability, and testability, among other characteristics:

Halstead metrics—controversial but nonetheless fascinating, these metrics pro-
vide unique measures of a computer program.

Complexity metrics—measure the logical complexity of source code (can also be
considered to be component-level design metrics).

Length metrics—provide an indication of the size of the software.

Metrics for testing. These metrics assist in the design of effective test cases and
evaluate the efficacy of testing:

Statement and branch coverage metrics—lead to the design of test cases that pro-
vide program coverage.

Defect-related metrics—focus on bugs found, rather than on the tests themselves.
Testing effectiveness—provide a real-time indication of the effectiveness of tests
that have been conducted.

In-process metrics—process related metrics that can be determined as testing is
conducted.

In many cases, metrics for one model may be used in later software engineering ac-
tivities. For example, design metrics may be used to estimate the effort required to
generate source code. In addition, design metrics may be used in test planning and
test case design.

SAFeHOME

) ‘batingi Product Metrics

e scene: Vinod's cubicle. The conversation: e
Jamie and Ed—members of the Vinod: Doug {Doug Miller,
engineering feam, who are confinuing manager] told me that we:should ol
design-and fest case design. metrics, but he was kind of vague:

472

PART TWO SOFTWARE ENGINEERING PRACTICE

us avoid one maijor or
saves us from havir
save time. No?

Although relatively few analysis and specification metrics have appeared in the lit-
erature, it is possible to adapt metrics that are often used for project estimation and
apply them in this context. These metrics examine the analysis model with the intent
of predicting the “size” of the resultant system. Size is sometimes (but not always)
an indicator of design complexity and is aimost always an indicator of increased cod-
ing, integration, and testing effort.

15.3.1 Function-Based Metrics

The function point metric (FP), first proposed by Albrecht [ALB79], can be used effec-
tively as a means for measuring the functionality delivered by a system.® Using his-
torical data, the FP can then be used to (1) estimate the cost or effort required to
design, code, and test the software; (2) predict the number of errors that will be en-
countered during testing, and (3) forecast the number of components and/or the
number of projected source lines in the implemented system.

Function points are derived using an empirical relationship based on countable
(direct) measures of software’s information domain and assessments of software
complexity. Information domain values are defined in the following manner:’

6 Since Albrecht's original work, hundreds of books, papers, and articles have been written on FP. A
worthwhile bibliography can be found at [IFP03].

7 Inactuality, the definition of information domain values and the manner in which they are counted
are a bit more complex. The interested reader should see [IFPO1] for more details.

CHAPTER 15 PRODUCT METRICS) 473

Number of external inputs (EIs). Each external input originates from a user or
is transmitted from another application and provides distinct application-oriented
data or control information. Inputs are often used to update internal logical files
(ILFs). Inputs should be distinguished from inquiries, which are counted separately.

Number of external outputs (EOs). Each external output is derived within the

'\application and provides information to the user. In this context external output

refers to reports, screens, error messages, and so on. Individual data items within a
report are not counted separately.

Number of external inquiries (EQs). An external inquiry is defined as an on-

< line input that results in the generation of some immediate software response in

the form of an on-line output (often retrieved from an ILF).

Number of internal logical files (ILFs). Each internal logical file is a logical
grouping of data that resides within the application’s boundary and is maintained
via external inputs.

Number of external interface files (EIFs). Each external interface file is a log-
ical grouping of data that resides external to the application but provides data that
may be of use to the application.

Once these data have been collected, the table in Figure 15.2 is completed and a
complexity value is associated with each count. Organizations that use function
point methods develop criteria for determining whether a particular entry is simple,
average, or complex. Nonetheless, the determination of complexity is somewhat
subjective.

To compute function points (FP), the following relationship is used:

FP = count total x [0.65 + 0.01 X % (F})] (15-1)

where count total is the sum of all FP entries obtained from Figure 15.2.
The F; (i = 1 to 14) are value adjustment factors (VAF) based on responses to the
following questions [LON02]:

1. Does the system require reliable backup and recovery?

Computing
function points

Information Weighting factor

Domain Value Simple Average Complex

External inputs {Els} X 3 4 6 =
External Outputs (EOs) X 4 5 7 =
External Inquiries (EQs) X 3 4 6 =
Internal Logical Files (ILFs) X 7 10 15
External Interface Files {EIFs) X 5 7 10

Count total

474

N
e,
POINT
Volue adjustment
factors are used to
provide an indication

of problem complexity.

An orHine FP calculator
can be found at
irh.cs.onimagdebur
g.de/sw-ong/
us/java/fp/.

PART TWO SOFTWARE ENGINEERING PRACTICE

2.

NG

8.

9.
10.
11.
12.
13.
14.

Are specialized data communications required to transfer information to or
from the application?

Are there distributed processing functions?

Is performance critical?

Will the system run in an existing, heavily utilized operational environment?
Does the system require on-line data entry?

Does the on-line data entry require the input transaction to be built over mul-
tiple screens or operations?

Are the ILFs updated on-line?

Are the inputs, outputs, files, or inquiries complex?

Is the internal processing complex?

Is the code designed to be reusable?

Are conversion and installation included in the design?

Is the system designed for multiple installations in different organizations?

Is the application designed to facilitate change and for ease of use by the user?

Each of these questions is answered using a scale that ranges from 0 (not important
or applicable) to 5 (absolutely essential). The constant values in Equation (15-1) and
the weighting factors that are applied to information domain counts are determined
empirically.

To illustrate the use of the FP metric in this context, we consider a simple analy-
sis model representation, illustrated in Figure 15.3. Referring to the figure, a data
flow diagram (Chapter 8) for a function within the SafeHome software is represented.
The function manages user interaction, accepting a user password to activate or de-
activate the system, and allows inquiries on the status of security zones and various
security sensors. The function displays a series of prompting messages and sends
appropriate control signals to various components of the security system.

A data flow
model for
SafeHome
software

Test sensor

Password

Panic button

Activate/deactivate g

Zone setting

Messages

Sensor status |

Activate /deactivate

Password, sensors . . .

System configuration data |

CHAPTER 15 PRODUCT METRICS 475

The data flow diagram is evaluated to determine a set of key information domain
measures required for computation of the function point metric. Three external
inputs—password, panic button, and activate/deactivate—are shown in the
figure along with two external inquires—zone inquiry and sensor inquiry. One ILF
(system configuration file) is shown. Two external ocutputs (messages and sen-
sor status) and four EIFs (test sensor, zone setting, activate/deactivate, and
alarm alert) are also present. These data, along with the appropriate complexity,
are shown in Figure 15.4.

The count total shown in Figure 15.4 must be adjusted using Equation (15-1):

FP = count total X [0.65 + 0.01 X % (F)]

where count total is the sum of all FP entries obtained from Figure 15.4 and F; (i = 1
to 14) are value adjustment factors. For the purposes of this example, we assume that
3. (F) is 46 (a moderately complex product). Therefore,

FP = 50 X [0.65 + (0.01 x 46)] = 56

Based on the projected FP value derived from the analysis model, the project team
can estimate the overall implemented size of the SafeHome user interaction function.
Assume that past data indicates that one FP translates into 60 lines of code (an
object-oriented language is to be used) and that 12 FPs are produced for each per-
son-month of effort. These historical data provide the project manager with impor-
tant planning information that is based on the analysis model rather than
preliminary estimates. Assume further that past projects have found an average of
three errors per function point during analysis and design reviews and four errors per
function point during unit and integration testing. These data can help software en-
gineers assess the completeness of their review and testing activities.

Uemura and his colleagues [UEM99] suggest that function points can also be
computed from UML class and sequence diagrams (Chapters 8 and 10). The inter-
ested reader should see [UEM99] for details.

Computing
function points

Information Weighting factor
Domain Value Simple Average Complex

External Inputs {Els) X 4 6 =
External Outputs (EOs) X @ 5 7 =
External Inquiries (EQs) X @ 4 6 =
Internal Logical Files (ILFs) X @ 10 15 = :
External Interface Files (EIFs) X @ 7 10 =
Count total 0

476

o
o,
POINT
By measuring
characteristics of the
specification, it is
possible o gain .
quantitative insight
into specificity and
completeness.

PART TWO SOFTWARE ENGINEERING PRACTICE

st musing on what ‘new metric’ might apply . . . we should akso be asking ourselves the more basic
wilkwe do with metrics?’ * L

15.3.2 Metrics for Specification Quality

Davis and his colleagues [DAV93] propose a list of characteristics that can be used
to assess the quality of the analysis model and the corresponding requirements spec-
ification: specificity (lack of ambiguity), completeness, correctness, understandability,
verifiability, internal and external consistency, achievability, concision, traceability, mod-
ifiability, precision, and reusability. In addition, the authors [DAV93] note that high-
quality specifications are electronically stored, executable or at least interpretable,
annotated by relative importance, stable, versioned, organized, cross-referenced,
and specified at the right level of detail.

Although many of these characteristics appear to be qualitative in nature, Davis
et al. [DAV93] suggest that each can be represented using one or more metrics. For
example, we assume that there are n, requirements in a specification, such that

n,= nf+ nnj‘

where ny is the number of functional réquirements and n,, is the number of non-
functional (e.g., performance) requirements.

To determine the specificity (lack of ambiguity) of requirements, Davis et al. sug-
gest a metric that is based on the consistency of the reviewers’ interpretation of each
requirement:

Q; = ny/n;,

where n,; is the number of requirements for which all reviewers had identical interpre-
tations. The closer the value of Q to 1, the lower is the ambiguity of the specification.

The completeness of functional requirements can be determined by computing the
ratio

Q; = n,/[n; X ng

where n, is the number of unique function requirements, n; is the number of inputs
(stimuli) defined or implied by the specification, and n; is the number of states spec-
ified. The Q, ratio measures the percentage of necessary functions that have been
specified for a system. However, it does not address nonfunctional requirements. To
incorporate these into an overall metric for completeness, we must consider the de-
gree to which requirements have been validated:

Qs =n/[n. + Ny

where n, is the number of requirements that have been validated as correct and n,,
is the number of requirements that have not yet been validated.

@,

POINT
Metrics can provide
insight info structural
data ond system
complexity associated
with architectural
design.

CHAPTER 15 PRODUCT METRICS 477

It is inconceivable that the design of a new aircraft, a new computer chip, or a new
office building would be conducted without defining design measures, determining
metrics for various aspects of design quality, and using them to guide the manner in
which the design evolves. And yet, the design of complex software-based systems
often proceeds with virtually no measurement. The irony of this is that design met-
rics for software are available, but the vast majority of software engineers continue
to be unaware of their existence.

Design metrics for computer software, like all other software metrics, are not per-
fect. Debate continues over their efficacy and the manner in which they should be
applied. Many experts argue that further experimentation is required before design
measures can be used. And yet, design without measurement is an unacceptable
alternative.

15.4.1 Architectural Design Metrics

Architectural design metrics focus on characteristics of the program architecture
(Chapter 10) with an emphasis on the architectural structure and the effectiveness of
modules or components within the architecture. These metrics are “black box” in the
sense that they do not require any knowledge of the inner workings of a particular
software component.

Card and Glass [CAR90] define three software design complexity measures: struc-
tural complexity, data complexity, and system complexity.

For hierarchical architectures (e.g., call and return architectures), structural com-
plexity of a module i is defined in the following manner:

S(0) = fZould) (15-2)

where f,,(i) is the fan-out® of module .
Data complexity provides an indication of the complexity in the internal interface
for a module i and is defined as

D() = v(i)/ [foul) + 1] (15-3)

where v(i) is the number of input and output variables that are passed to and from
module i,

8 Fan-out is defined as the number of modules immediately subordinate to the module j, that is, the
number of modules that are directly invoked by module i. Fan-in is defined as the number of mod-
ules that directly invoke module i.

478

Morphology
metrics

PART TWO SOFTWARE ENGINEERING PRACTICE

Finally, system complexity is defined as the sum of structural and data complexity,

specified as

C(@) = S(i) + D() (15-4)
As each of these complexity values increases, the overall architectural complexity of
the system also increases. This leads to a greater likelihood that integration and test-
ing effort will also increase.

Fenton [FEN91] suggests a number of simple morphology (i.e., shape) metrics that
enable different program architectures to be compared using a set of straightforward
dimensions. Referring to the call-and-return architecture in Figure 15.5, the follow-
ing metrics can be defined:

size=n+a

where n is the number of nodes and a is the number of arcs. For the architecture
shown in Figure 15.5,

size = 17 + 18 = 35

depth = 4, the longest path from the root {top) node to a leaf node.

width = 6, maximum number of nodes at any one level of the architecture.
arc-to-node ratio, r = a/n,

which measures the connectivity density of the architecture and may provide a
simple indication of the coupling of the architecture. For the architecture shown in
Figure 155, r = 18/17 = 1.06.

The U.S. Air Force Systems Command [USA87] has developed a number of soft-
ware quality indicators that are based on measurable design characteristics of a
computer program. Using concepts similar to those proposed in IEEE Std. 982.1-1988
[IEE94], the Air Force uses information obtained from data and architectural design

- Width >

CHAPTER 15 PRODUCT METRICS 479

to derive a design structure quality index (DSQI) that ranges from 0 to 1. The follow-
ing values must be ascertained to compute the DSQI [CHA89]:

S, = the total number of modules defined in the program architecture

S, = the number of modules whose correct function depends on the source of
data input or that produce data to be used elsewhere (in general, control
modules, among others, would not be counted as part of S5)

S; = the number of modules whose correct function depends on prior pro-
cessing

S4 = the number of database items (includes data objects and all attributes that
define objects)

S;s = the total number of unique database items

Se = the number of database segments (different records or individual objects)

S; = the number of modules with a single entry and exit (exception processing
is not considered to be a multiple exit)

Once values S, through S; are determined for a computer program, the following in-
termediate values can be computed:

Program structure: D,, where D, is defined as follows: If the architectural design
was developed using a distinct method (e.g., data flow-oriented design or object-
oriented design), then D, = 1, otherwise D, = 0.

Module independence: D, = 1 — (S,/S))

Modules not dependent on prior processing: D; = 1 — (S3/S))

Database size: Dy = 1 — (S5/S,)

Database compartmentalization: Ds = 1 — (S¢/S,)

Module entrance/exit characteristic: Dg = 1 — (S;/S))

With these intermediate values determined, the DSQI is computed in the following
manner:

DSQI = S wD; (15-5)

where I = 1 1o 6, w; is the relative weighting of the importance of each of the inter-
mediate values, and 3 w; = 1 (if all D; are weighted equally, then w; = 0.167).

The value of DSQI for past designs can be determined and compared to a design
that is currently under development. If the DSQI is significantly lower than average,
further design work and review are indicated. Similarly, if major changes are to be
made to an existing design, the effect of those changes on DSQI can be calculated.

et 'cmlusun us a detour. This detour is necessary because humans masﬂym not ubhmw do
dacisions [without quantitative support].”

480

What charac-
KY teristics
can be measured
when we assess
an 00 design?

PART TWO SOFTWARE ENGINEERING PRACTICE

15.4.2 Metrics for Object-Oriented Design

There is much about object-oriented design that is subjective—an experienced de-
signer “knows” how to characterize an OO system so that it will effectively imple-
ment customer requirements. But, as an OO design model grows in size and
complexity, a more objective view of the characteristics of the design can benefit
both the experienced designer (who gains additional insight) and the novice (who
obtains an indication of quality that would otherwise be unavailable).

In a detailed treatment of software metrics for OO systems, Whitmire [WHI97] de-
scribes nine distinct and measurable characteristics of an OO design:

Size. Size is defined in terms of four views: population, volume, length, and
functionality. Population is measured by taking a static count of OO entities such as
classes or operations. Volume measures are identical to population measures but
are collected dynamically—at a given instant of time. Length is a measure of a
chain of interconnected design elements (e.g., the depth of an inheritance tree is a
measure of length). Functionality metrics provide an indirect indication of the value
delivered to the customer by an OO application.

Complexity. Like size, there are many differing views of software complexity
[ZUS97]. Whitmire views complexity in terms of structural characteristics by exam-
ining how classes of an OO design are interrelated to one another.

Coupling. The physical connections between elements of the OO design (e.g.,
the number of collaborations between classes or the number of messages passed
between objects) represent coupling within an OO system.

Sufficiency. Whitmire defines sufficiency as “the degree to which an abstrac-
tion possesses the features required of it, or the degree to which a design compo-
nent possesses features in its abstraction, from the point of view of the current
application.” Stated another way, we ask: What properties does this abstraction
(class) need to possess to be useful to me? [WHI97]. In essence, a design compo-
nent (e.g., a class) is sufficient if it fully reflects all properties of the application do-
main object that it is modeling--that is, that the abstraction (class) possesses the
features required of it.

o fox which | hod fo rely on folklore and myth can now be made using ywonti

Completeness. The only difference between completeness and sufficiency is
“the feature set against which we compare the abstraction or design component”
[WHI97]. Sufficiency compares the abstraction from the point of view of the current
application. Completeness considers multiple points of view, asking the question:
What properties are required to fully represent the problem domain object? Be-
cause the criterion for completeness considers different points of view, it indirectly
implies the degree to which the abstraction or design component can be reused.

